Generalized selfish bin packing
نویسندگان
چکیده
Standard bin packing is the problem of partitioning a set of items with positive sizes no larger than 1 into a minimum number of subsets (called bins) each having a total size of at most 1. In bin packing games, an item has a positive weight, and given a valid packing or partition of the items, each item has a cost or a payoff associated with it. We study a class of bin packing games where the payoff of an item is the ratio between its weight and the total weight of items packed with it, that is, the cost sharing is based linearly on the weights of items. We study several types of pure Nash equilibria: standard Nash equilibria, strong equilibria, strictly Pareto optimal equilibria, and weakly Pareto optimal equilibria. We show that any game of this class admits all these types of equilibria. We study the (asymptotic) prices of anarchy and stability (PoAand PoS) of the problem with respect to these four types of equilibria, for the two cases of general weights and of unit weights. We show that while the case of general weights is strongly related to the well-known First Fit algorithm, and all the four PoA values are equal to 1.7, this is not true for unit weights. In particular, we show that all of them are strictly below 1.7, the strong PoA is equal to approximately 1.691 (another well-known number in bin packing) while the strictly Pareto optimal PoA is much lower. We show that all the PoS values are equal to 1, except for those of strong equilibria, which is equal to 1.7 for general weights, and to approximately 1.611824 for unit weights. This last value is not known to be the (asymptotic) approximation ratio of any well-known algorithm for bin packing. Finally, we study convergence to equilibria.
منابع مشابه
Prices of anarchy of selfish 2D bin packing games
We consider a game-theoretical problem called selfish 2-dimensional bin packing game, a generalization of the 1-dimensional case already treated in the literature. In this game, the items to be packed are rectangles, and the bins are unit squares. The game starts with a set of items arbitrarily packed in bins. The cost of an item is defined as the ratio between its area and the total occupied a...
متن کاملExtending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items
In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...
متن کاملConvergence Time to Nash Equilibrium in Selfish Bin Packing
We consider a game-theoretic bin packing problem and we study the convergence time to a Nash equilibrium. We show that, if the best-response strategy is used, then the number of steps needed to reach Nash equilibrium is O(mw2 max + nwmax) and O(nkwmax), where n, m, k and wmax denotes, resp., the number of items, the number of bins, the number of distinct item sizes, and the size of a largest item.
متن کاملSelfish bin coloring
We introduce a new game, the so-called bin coloring game, in which selfish players control colored items and each player aims at packing its item into a bin with as few different colors as possible. We establish the existence of Nash and strong as well as weakly and strictly Pareto optimal equilibria in these games in the cases of capacitated and uncapacitated bins. For both kinds of games we d...
متن کاملThe Generalized Bin Packing Problem
We introduce the Generalized Bin Packing Problem, a new packing problem where, given a set of items characterized by volume and profit and a set of bins with given volumes and costs, one aims to select the subsets of profitable items and appropriate bins to optimize an objective function combining the cost of using the bins and the profit yielded by loading the selected items. The Generalized B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1202.4080 شماره
صفحات -
تاریخ انتشار 2012